
i
Spejd
Adam Przepiórkowski, Aleksander Buczyński (formalism, basic implementation)
Bartosz Zaborowski (re-implementation)
{adamp;b.zaborowski}@ipipan.waw.pl Institute of Computer Science, PAS

Introduction
Tagging and (partial) parsing are usually done
as separate processes. Spejd combines them
into one parallel process: allows to simultane-
ously disambiguate and build syntactic struc-
tures within a single rule.

Main features
• bases on handwritten rules

• supports for various input/output formats (XCES, TEI, plain-text)

• built-in sentencer, tokenizer, morphological analyzer, tagger (for Polish)

• has easy interface to external morphological dictionaries

• fast, stable, extensible

• open-source (GPL license), homepage: http://zil.ipipan.waw.pl/Spejd/

Implementation
• Spejd formalism is implemented as a one block in a toolchain.

• the code is highly optimized, written in C++

• available as a library for Linux and Windows, to make integration with other tools easier

The only required nodes in toolchain are reader and writer. Each thread uses a separate copy of
chain (blocks may share some data).

(optional) processing block 1 (e.g. tagger)

TEI reader

(opt.) block n-1 (your extensions here :)

(opt.) block n (e.g. Spejd block)

TEI writer XCES writer

(optional) processing block 1 (e.g. tagger)

plain-text reader with
opt. morpho-analysis

(opt.) block n-1 (your extensions here :)

(opt.) block n (e.g. Spejd block)

TEI writer XCES writer

(optional) processing block 1 (e.g. tagger)

XCES reader

(opt.) block n-1 (your extensions here :)

(opt.) block n (e.g. Spejd block)

TEI writer XCES writer

Threads can
read files in
a different

formats
simultaneously

multiple copies
of toolchain

process
different files

in parallel

To save
memory some
blocks share

data structures
between
threads

All output
files have the
same format

shared
structure

The toolchain is easily extensible, e.g. blocks allowing to use external tools like taggers can be
written in just few hours. It is also possible to add support for different input/output formats.
Documentation on writing extensions is included in the source package.

Performance
The toolchain is highly optimized, some major optimizations are:

• custom fast parsers for XML formats

• full parallelisation

• Spejd formalism uses advanced finite-state techniques: its perfor-
mance is hardly related to the total number of rules

At the moment, Spejd toolchain:

• was tested on grammars with over 12.000 of rules

• was tested on input data consisting of over a billion of words

• on a modern computer with 4-core CPU reaches performance of
60k rules applied per second and for less complex grammars reaches
speed of over 200k words per second

• scales well on systems with dozens of CPUs (only for small grammars
or relatively large corpora, because of gradual gaining of speed which is
visible on the plot)

position[Mtok]

speed[ktok/s]

1 2 3 4 5 6 7 8 9

20

40

60

80

100

120

˜12 500 rules; ˜32 matches/sent

˜1 200 rules; ˜23 matches/sent

˜150 rules; ˜18 matches/sent

˜12 000 rules; ˜5 matches/sent

Speed raises gradually while the structures are being built.
It depends mainly on rule matches rate, not on the total number of rules.

Formalism
Main ideas:

• rules = cascade of regular grammars

• each rule has 2 parts:

– match specification (describes desired
phrase and its contexts at various levels of
annotation)

– list of operations (modifying mor-
phosyntactic information, creating and al-
tering syntactic structures and others)

• the formalism is language and tagset inde-
pendent (of course specific rules are not:)

An example rule, which at the same time uni-
fies morphosyntactic information of words and
builds a syntactic structure:

Rule "NG: Adj + Noun"
Match: [pos˜"Adj|Pact|Ppas"]

([pos˜"Noun"] | [type="NG.*"]);
Eval: unify(case number gender,1,2);

group(NG,2,2);

In comparison with 0.8x, current version pro-
vides:

• simplifications of syntax

• larger number of eval operations

• numeric variables/attributes support

New extensions in an example rule:

Rule "numeric example"
Match: A[orth˜nie/i] B[base˜być]

C[abs(sen)>5 && revers˜"rev"];
Eval: alter(B, nrefl, B.base);

word(C, sen=-sen*@some_var:neg,
A.base C.base);

assign(@some_var=C.sen*0.8);

